

Immunology Basics Relevant to Cancer Immunotherapy:

Initiation of T Cell Reponses: Innate immunity, DCs, Antigen Presentation, MHC restriction

Andrew H. Lichtman, M.D. Ph.D. Department of Pathology Brigham and Women's Hospital and Harvard Medical School

Lecture Outline

- Brief overview of tumor Immunity: why focus on T Cells?
- Innate immune activation of dendritic cells, by microbes and tumors
- T cell recognition of antigen
- Antigen processing and presentation pathways for CD8+ and CD4+ T cell responses
- Major histocompatibility complex molecules and MHC restriction
- Identifying tumor antigens that can be presented by MHC molecules

Rodent Work in Tumor Immunology Established to Importance of T Cells

T lymphocytes infiltrate tumors and their presence improves prognosis

History of Cancer Immunotherapy It's all about T cells

The life history of T lymphocytes

Abbas, Lichtman and Pillai. Cellular and Molecular Immunology, 7th edition, 2011 C Elsevier

Capture of antigens

Sites of antigen entry

Sites of initial antigen capture

Sites of antigen collection and capture

Dendritic cell (DC) subsets

- Classical: CD11c+, located in epithelia (site of microbe entry), role in capture and presentation of most antigens
- Plasmacytoid: source of type I IFN; capture of blood-borne antigens, transport to the spleen

- Immature: in tissues; role in presentation of self antigens and maintenance of tolerance
- Mature: activated by activated by innate immune responses: TLR and other signals; role in T cell activation

Innate Immune System: What is recognized?

- Structures that are shared by various classes of microbes but are not present on host cells -Pathogen associated molecular patterns (PAMPs).
 - Innate immunity often targets microbial molecules that are essential for survival or infectivity of microbes (prevents escape mutants)
- Structures produced in damaged or necrotic host cells - Damage associated molecular patterns (DAMPs).
 - Cell injury and death associated with tumor growth may provide the DAMPs

Innate Pattern Recognition Receptors

Receptors are located where they can sample all cellular compartments

4 major classes of receptors:

-TLRs: bacteria and viruses

-CLRs (C-type lectin receptors): fungi

-NLRs: bacteria and cell damage

-RNS/DNA sensors: viruses

Capture and Presentation of Antigens by DCs

Abbas, Lichtman and Pillai. Basic Immunology, 5th edition, 2016, Elsevier

Sites of microbe entry:

skin, GI tract, airways (organs with continuous epithelia, populated with dendritic cells). Less often -- infected tissues, blood

Sites of lymphocyte

<u>activation</u>: secondary lymphoid organs (lymph nodes, spleen), mucosal and cutaneous lymphoid tissues

Antigens and naive T cells come together in the same organs Why are dendritic cells the most efficient APCs for initiating immune responses?

- Location: at sites of microbe entry (epithelia), tissues
- Receptors for capturing and reacting to microbes: Toll-like receptors, other receptors
- Migration to T cell zones of lymphoid organs
 - Role of CCR7
 - Co-localize with naïve T cells
- Practical application: dendritic cell-based vaccines for tumors

What do T Cells Recognize?

Most T cells only recognize peptides bound to Major Histocompatibility complex (MHC) molecules on the surface of other cells called antigen presenting cells (APCs).

CD4+ and CD8+ T cells and MHC Class Restriction

CD4+ T cell recognition is class II MHC restricted

CD8+ T cells (cytotoxic T lymphocytes)

CD8+ T cell recognition is class I MHC restricted

Human MHC (HLA) molecules

All MHC molecules have a similar basic structure: the cleft at the N-terminal region binds peptide antigens and is recognized by T cell receptors and the membraneproximal domain binds CD4 or CD8. What is the Significance of Class II or Class I MHC Restriction of CD4+ and CD8+ T cells?

- Lymphocytes must respond to each microbe in ways that are able to eradicate that microbe
 - Extracellular microbes: antibodies; destruction in phagocytes (need helper T cells)
 - Intracellular microbes (those that survive and reproduce inside our cells): killing of infected cells (need CTLs)
 - T cells distinguish antigens in different cellular locations on the basis of class II vs. class I MHC
- Class II and Class I MHC molecules mainly present peptides from extracellular vs. intracellular microbes, respectively
 - This is based on antigen processing pathways

Where do the MHC-binding Peptides Come From?

Abbas, Lichtman, Pillai. Cellular and Molecular Immunology. Elsevier. 2017

Cross-presentation

- Naive CD8+ T cells specific for tumor antigen need to be activated by DCs.
- Antigens taken into DCs by phagocytosis would typically be processed by the class II MHC pathways, for CD4+ T cell activation.
- But tumor antigens (also viral antigens) taken into phagosomes of DCs *can be delivered to the cytosol* for access to the class I MHC antigen processing pathways

Polymorphism of HLA genes

Locus	Number of alleles
A	2579
В	3285
С	2133
DRA	7
DRB	1512
DQA1	51
DQB1	509
DPA1	37
DPB1	248
Total	10533 !!!

- Most polymorphic genes in biology
 - Large number of variants (alleles) in the population

Human MHC (HLA) molecules

- The polymorphic amino acid residues are all in the peptide binding grooves
- Different people will recognize different (but overlapping) sets of peptides

Peptide Binding Properties of MHC Molecules-1

Property	Significance
Broad specificity	Many different peptides can bind to the same MHC molecule
Each MHC molecule displays one peptide at a time	Each T cell responds to a single peptide bound to an MHC molecule
Class I vs. class II MHC bind different size peptides. Class I: 8-9 amino acids Class II: 10-30 amino acids	Class I and Class II MHC bind different peptides from same proteins. CD4+ and CD8+ T cells respond to different peptides from same protein
Peptides bind to MHC using 1 or 2 anchor residues, i.e. amino acid residues whose side chains fit into pockets in cleft floor	Only one or two amino acid residues determine if a peptide can bind to a particular MHC molecule; therefore many different peptides can bind any one MHC molecule

Cancer Patients' T cells Respond to Tumor Specific Antigens Derived from Mutated Proteins (neoantigens) and Oncogenic Viruses

Most cancer T cell antigens are generated by random mutations in genes whose function is unrelated to malignant phenotype. More *mutations generates more* neoantigens, and more T cell clones activated.

Abbas, Lichtman, Pillai. Cellular and Molecular Immunology. Elsevier. 2017

Cancer Patients' T cells Respond to Unmutated Protein Antigens

Identifying Mutant Tumor Peptides That Bind MHC Alleles for Personalized Tumor Vaccines

Relevance of MHC Polymorphism and T Cell MHC Restriction to Immunotherapy

- *"Intelligent design" of peptide vaccines against tumors*
- Tumor vaccines composed of mutant tumor peptides will have to be personalized to ensure peptides bind to a particular patient's MHC alleles
- The tumor antigen receptors used in adoptive T cell approaches (e.g. CAR T cells) cannot be TCRs, in order to be widely applicable to many patients